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Axicabtagene ciloleucel (axi-cel) is an autologous anti-CD19
chimeric antigen receptor T-cell (CAR-T) therapy approved for
the treatment of patients with relapsed or chemo-refractory
large B-cell lymphomas (LBCL). Axi-cel induced durable remis-
sions with a ZUMA-1 (Safety and Efficacy of KTE-C19 in Adults
With Refractory Aggressive Non-Hodgkin Lymphoma) overall
response rate (ORR) and complete response rate (CR) of 83%
and 58%, respectively, with 39% progression-free survival (PFS)
2 years postinfusion.1,2 However, the majority of axi-cel–treated
patients will ultimately experience disease progression. Only
limited data exist on patients with progressive disease (PD) after
anti-CD19 CAR-T therapy for LBCL.3,4 Because axi-cel currently
accounts for the majority of CAR-T infusions in the United States,
data regarding therapeutic options after progression are of great
interest.5,6

The US Lymphoma CAR-T Cell Consortium is a group of 17 US
centers certified for treatment of patients with axi-cel. We
previously reported on 275 axi-cel patients treated with stan-
dard-of-care axi-cel, finding a best ORR and CR rate of 82% and
64%, respectively.7 Median PFS was 8.3 months, and nonrelapse
mortality was 4.4%. Here we report on outcomes of patients
within the cohort who experienced PD. The 17 centers of the
consortium each obtained independent institutional review board
approval for this retrospective study. The study was conducted in
accordance with the guidelines of the International Conference
on Harmonisation and the Declaration of Helsinki.

The date of PD was defined as the date of clinical or radiologic
relapse. After a median follow-up of 12.9 months, 136 patients
(49%) experienced PD after axi-cel treatment. In these patients,
best response to axi-cel treatment was 36% CR and 31% partial
response (PR); 28% were primary refractory. Patients with PD
were more likely to be younger, male, had received more prior

lines of therapy, and had a high-risk International Prognostic
Index and Eastern Cooperative Oncology Group performance
status of 2 to 4 before axi-cel treatment compared with patients
who did not have PD (supplemental Table 1, available on the
Blood Web site). Patients who would have been ineligible for
ZUMA-1 based on comorbidities at leukapheresis were enriched
in the PD cohort. Rates of grade 3 or higher cytokine release
syndrome and neurotoxicity and pre–axi-cel bridging therapy
did not differ between PD and non-PD patients. Median time to
progression after axi-cel infusion was 91 days (95% confidence
interval [CI], 83-93).

The impact of CD19 loss in patients with LBCL treated with CAR
T has not been well described. Demonstration of CD19-positive
disease was not required prior to ZUMA-1 enrollment, and
pretreatment CD19 status was not associated with response.2

However, recent data reported CD19-negative disease at axi-cel
PD in;25% of patients.8,9 In our cohort, tissue biopsy to confirm
progression was performed in 85 (63%) of 136 patients. Mea-
surement of CD19 expression was assessed by using flow
cytometry and/or immunohistochemistry at each center. Cutoff
for CD19 positivity was determined locally and varied widely
between our centers (supplemental Table 2). Of those biopsied,
61 (72%) had CD19 assessed, and 18 (30%) of 61 were CD19
negative, only 1 of whom was CD19 negative before axi-cel
treatment. A multivariable logistic regression model assessing
impact of age, sex, and axi-cel response (either CR or PR) on CD19
negativity at PD foundpatients with CD19-negative PDweremore
likely to be younger (odds ratio for 1-year decrease of 1.06; 95%
CI, 1.01-1.11; P5 .02) and female (odds ratio, 6.67; 95% CI, 1.75-
33.3). Response to axi-cel was not associated with CD19-negative
lymphoma on biopsy (P5 .1). CD19-negative status at PDwas not
associated with inferior overall survival (OS) from the time of
progression (139 vs 218 days; P 5 .4).
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To assess the impact of baseline variables on post-PD OS, we fit
a multivariable Cox proportional hazards model. Variable clus-
tering was performed via the Hoeffding D statistic, and variable
selection was performed via the lasso method (glmnet package
in R software, version 3.6.2). Median OS from date of PD was
180 days (95%CI, 105-242) (Figure 1A). Patients with response to
axi-cel had increased survival after axi-cel progression (hazard
ratio [HR], 0.45; 95% CI, 0.29-0.71; P 5 .0005); patients with
severe cytokine release syndrome (grade 3 or higher) (HR, 5.39;
95% CI, 2.48-11.7; P 5 2.2 3 1025) and bridging therapy be-
tween leukapheresis and axi-cel infusion (HR, 2.11; 95%CI, 1.32-
3.39; P5 .002) had decreased survival (Figure 1B-D). In patients
who initially responded to axi-cel (n 5 91), a Cox model of time
to axi-cel PD as a continuous variable trended toward improved
survival post-PD (HR for 1 month increase in time to PD of 0.86;
95% CI, 0.73-1.01; P 5 .07).

Data regarding subsequent therapy after axi-cel treatment were
available in 135 (99%) PD patients. Selection of treatment was
determined by the treating physician. To allow for analysis of
combined modalities, therapies were categorized according to
systemic therapy if given in conjunction with localized therapy (eg,

concurrent checkpoint inhibitor and radiation); if multiple systemic
therapies were combined, primary therapywas determined by the
more frequently used therapy within the cohort (supplemental
Table 3). One hundred patients (74%) received further therapy,
and 35 (26%) received supportive care. The most-used therapies
in first salvage post–axi-cel were: checkpoint inhibitor based
(n5 30), lenalidomide based (n5 27), chemotherapy (n5 17), and
radiation (n 5 10). Other therapies included targeted treatments
such as venetoclax (n5 1), brentuximab vedotin (n5 2) or ibrutinib
(n5 2), novel therapies (n5 8), steroids (n5 1), second CAR-T on
clinical trial (n 5 1), and allogeneic stem cell transplant (n 5 1). In
total, 8 patients proceeded to allogeneic stem cell transplant after
axi-cel PD, 3 of whom remain in CR.

First salvage therapies post–axi-cel PD received by$10 patients
were selected for further analysis. Median time to initiating
therapy after progression was 21 days and did not differ
according to therapy. Overall, best response rates for these
patients were 29% ORR, with 17% CR, and median PFS was
55 days (95%CI, 47-86). Response rates according to therapy are
presented in Table 1. A univariate log-rank test comparing
checkpoint inhibitor–based therapy vs a combination of radiation-,
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Figure 1. Factors affecting survival after axi-cel progression. (A) Unstratified Kaplan-Meier analysis of OS after axi-cel progression. (B-D) OS stratified according to cytokine
release syndrome (CRS), bridging therapy and response to axi-cel. Gr, grade; SD, stable disease.
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chemotherapy-, and lenalidomide-based therapy reported a trend
toward increased PFS in patients treated with checkpoint
inhibitor–based therapy (P 5 .1) (supplemental Figure 1). Re-
sponse to checkpoint inhibitors did not differ according to ag-
gressive lymphoma histology (supplemental Figure 2), despite
pembrolizumab only being approved for the treatment of
relapsed/refractory PMBL.

In this subgroup analysis of the US Lymphoma CAR-T Consor-
tium cohort, we report the largest experience of treatment
outcomes after axi-cel failure for LBCL. The OS data included
here establish a benchmark for future trials in patients with
progression after standard-of-care CAR T for LBCL. Potential
survival benefit in patients with longer response to axi-cel suggests
differences in tumor biology in those with progression at later time
points. As with prior studies, in this large cohort, we found CD19
loss in ;30% of cases at the time of progression. Standardization
of CD19 assessment will likely improve our understanding of
mechanisms of CAR-T failure in the future. In those who re-
ceived therapy post–axi-cel, PFS was poor, with a median PFS of
first therapy of only 55 days. Although checkpoint inhibitor–
based therapy seemed to be the most effective of the ther-
apies used, enthusiasm was tempered due to the lack of OS
benefit.

There are several limitations to this study beyond its retrospective
nature. Therapy decisions, including whether to offer treatment,
were not prospectively suggested. The choice of therapy could be
influenced by multiple factors, including physician preference,
cost, insurance coverage, and distance from treating center.
Patient factors, such as cytopenias, also may have affected
treatment choice and duration of therapy after axi-cel progression.10

In the future, monitoring CAR-T cell blood expansion or quantifying
tumor burden pre–axi-cel could suggest mechanisms of axi-cel
failure and better guide choice of subsequent therapy. The
optimal management after CAR-T progression requires pro-
spective studies.
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Table 1. Treatment outcomes for first therapy given after axi-cel progression

Therapy CR ORR Median PFS (95% CI), d Median OS (95% CI), d

Checkpoint inhibitor based (n 5 28*) 18% 46% 88 (35-282) 331 (168-477)

Chemotherapy (n 5 17) 12% 18% 51 (21-64) 104 (51-231)

Lenalidomide based (n 5 27) 19% 19% 48 (33-84) 139 (45-NE)

Radiation (n 5 10) 20% 30% 58 (20-149) 220 (20-NE)

NE, not evaluable.

*Two patients received checkpoint inhibitors but did not have response data available.
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Philadelphia chromosome (Ph)-like/BCR-ABL1–like acute lym-
phoblastic leukemia (ALL; Ph-like ALL) defines a subgroup of
B-cell precursor ALL (B-ALL) lacking the BCR-ABL1 fusion, with a
similar gene-expression profile to BCR-ABL11 ALL and high risk
of relapse.1-3 Ph-like ALL represents a genetically heterogeneous
group, including a number of fusions, which involve the ABL-
class genes: PDGFRB/A, CSF1R, ABL1, and ABL2.4-6 Preclinical
studies have shown that leukemic cells from patients with these
fusions respond well to tyrosine kinase inhibitors (TKIs),4 which
has been confirmed in a number of patients, particularly those
with EBF1-PDGFRB fusions.7-10 Here, we focus on the genetic
and clinical features of a rare subset of ABL-class patients with
the SSBP2-CSF1R fusion. In particular, we reveal the diversity of
cytogenetic changes, giving rise to the fusion, highlighting that
awareness of these variants is important for its accurate de-
tection in light of TKI treatment options.

Patients in this study originated from 4 international study
groups in the United Kingdom, The Netherlands, Germany, and
the United States. All participating centers obtained local ethical
committee approval and written informed consent in accor-
dance with the Declaration of Helsinki. Demographic and clinical
details are summarized in supplemental Table 1 (available on the
Blood Web site). Cytogenetic analysis of diagnostic bone
marrow was performed in local laboratories. Interphase fluo-
rescence in situ hybridization (FISH) was carried out on the same
samples, using commercially available PDGFRB break-apart (BA)
probes. Involvement of SSBP2 and CSF1R was confirmed using
bespoke probes (supplemental Figure 1). Copy-number ab-
normalities (CNAs) were determined using single-nucleotide
polymorphism (SNP) arrays or array comparative genomic hy-
bridization (aCGH). Expression of the SSBP2-CSF1R fusions was
confirmed by reverse transcription–polymerase chain reaction
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